关于ChatGPT八个技术问题的猜想-张家俊(2)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
2. 为什么面向对话的微调没有遭遇灾难性遗忘问题?
灾难性遗忘问题一直是深度学习中的一个挑战,经常因为在某个任务上训练后就丧失了在其他任务上的性能。例如,一个30亿参数的基础模型,先在自动问答数据上进行微调,然后在多轮对话数据上进行微调,结果会发现模型的问答能力大幅度下降。ChatGPT似乎不存在这个问题,其在基础模型GPT-3.5上进行了两次微调,第一次依据人工标注的对话数据进行微调,第二次根据人类反馈的强化学习进行微调,微调使用的数据很少,尤其是人类反馈的打分排序数据更少,微调后竟然仍然表现出强大的通用能力,而并没有完全过拟合到对话任务。这是个非常有趣的现象,也是我们没有条件验证的现象。猜测可能有两方面的原因,一方面是ChatGPT使用的对话微调数据实际可能包含了非常全面的NLP各种任务,正如InstructGPT中对用户使用API的问题分类可以发现,很多都不是简单的对话,还有分类、问答、摘要、翻译、代码生成等等,因此,ChatGPT实际是对若干任务同时进行了微调;另一方面,可能当基础模型足够大之后,在较小数据上的微调不会对模型产生很大影响,可能仅在基础模型参数空间非常小的邻域中优化,所以不会显著影响基础模型的通用能力。
3. ChatGPT的大范围上下文连续对话能力是如何做到的?
使用ChatGPT时就会发现它一个让人十分惊讶的能力,即使和ChatGPT交互了十多轮,它仍然还记得第一轮的信息,而且能够根据用户意图比较准确地识别省略、指代等细粒度语言现象。这些对我们人来说似乎不算问题,但是在NLP的研究历史中,省略、指代等问题一直是一个难以逾越的挑战。此外,在传统对话系统中,对话轮次多了之后,话题的一致性难以保障。但是,ChatGPT几乎不存在这个问题,即使轮次再多,似乎都可以保持对话主题的一致性和专注度。猜测这个能力可能有三方面的来源。首先,高质量的多轮对话数据是基础和关键,正如Google的LaMDA,OpenAI也采用人工标注的方式构造了大量高质量多轮对话数据,在此之上进行的微调将会激发模型的多轮对话能力。其次,基于人类反馈的强化学习因为提升了模型回复的拟人性,也会间接增强模型多轮对话的一致性能力。最后,模型对8192个语言单元(Token)的显式建模能力使其几乎可以记忆普通人一整天的对话数据,在一次对话交流中很难超出这个长度,因此,所有对话历史都已经被有效记忆,从而可以显著提升连续多轮对话的能力。
4. ChatGPT的交互修正能力是如何炼成的?
99科技网:http://www.99it.com.cn

如果听腻了ChatGPT,今天我们看一个围绕着IBM,人工智能和NASA的高能案例。
快资讯2023-02-27
